敬告作者朋友
最近我们发现,有一些假冒本刊在线投稿系统的网站,采用与《麦类作物学报》相似的网页、网址和邮箱发送征稿通知以及收取审稿费、版面费的信息,以骗取钱财。详细情况见【通知公告】栏的“再次提醒作者朋友:谨防上当受骗!!!”

关闭
何 瑞,马靖福,刘 媛,张沛沛,栗孟飞,王彩香,宿俊吉,程宏波,杨德龙.小麦粒形QTL定位及其与水分环境互作遗传分析[J].麦类作物学报,2020,(8):906
小麦粒形QTL定位及其与水分环境互作遗传分析
Genetic Dissection of QTL Mapping and QTL×Water Interaction for Kernel Morphology in Wheat
  
DOI:10.7606/j.issn.1009-1041.2020.08.02
中文关键词:  小麦  粒形  QTL定位  遗传效应  水分环境互作
英文关键词:Wheat  Kernel morphology  QTL mapping  Genetic effects  Water-environment interaction
基金项目:国家自然科学基金项目(31760385,31460348);甘肃省现代农业产业技术体系项目(GARS-01-04);甘肃农业大学科研启动基金项目(GAU-KYQD-2018-41)
作者单位
何 瑞,马靖福,刘 媛,张沛沛,栗孟飞,王彩香,宿俊吉,程宏波,杨德龙 (1.甘肃省干旱生境作物学重点实验室甘肃兰州 730070 2.甘肃农业大学生命科学技术学院甘肃兰州 730070) 
摘要点击次数: 724
全文下载次数: 561
中文摘要:
      为了解析小麦粒形性状的分子数量遗传特征及其与水分环境的互作关系,以两个冬小麦品种(陇鉴19和Q9086)为亲本创建的重组近交系(recombinant inbred lines,RIL)群体120个株系为供试材料,利用复合区间作图法对两种环境条件下该群体的粒形进行QTL定位和遗传解析。结果表明,小麦RIL群体中各株系呈现广泛的表型变异和超亲分离,对水分环境反应敏感,属于多基因控制的数量性状,遗传模式复杂。在两种环境条件下共检测到控制粒形的26个加性QTL(A-QTL)和22对上位性QTL(AA-QTL),分布在除4D、6D、7A和7D以外的其他17条染色体上,对表型变异的贡献率分别为3.60%~13.90%和0.52%~2.76%,对粒形的表型有正向或负向遗传效应。这些A-QTL和AA-QTL均与水分环境存在显著互作,但对表型变异的贡献率较低(<3.05%)。在A-QTL中发现了3个对表型变异贡献率大于10%的主效位点( Qkl.acs-1B.1, Qkw.acs-6A.1 Qkp.acs-1B.1),未检测到两种环境中稳定表达的A-QTL位点。在1B、3B、4B、5A、5B、5D和6A染色体上发现了7个A-QTL热点区域(Xgwm153~Xmag981、Xwmc231~Xbarc173、Xgwm149~Xgwm495、Xgwm186~Xcfa2185、Xbarc59~Xbarc232、Xgwm292~Xwmc161、Xksum255~Xbarc171),这些标记区间可能是控制小麦粒形基因的重要区域。
英文摘要:
      In order to explore the molecular quantitative genetic characteristics of kernel morphology and interactions with water environments in wheat, a set of 120 recombinant inbred lines(RILs) derived from a cross between two winter wheat varieties Longjian 19 and Q9086 were developed to identify quantitative trait loci (QTL) and to dissect the genetic basis underlying the kernel morphology under diverse water conditions by composite interval mapping. The results showed that phenotypic values of kernel morphology in the RILs varied widely and showed transgressive segregation in response to different water conditions, indicative of their quantitative trait controlled by polygenes with complex genetic models.Under different environmental conditions, 26 additive QTLs (A-QTLs) and 22 pairs of epistatic QTLs (AA-QTLs) were detected for five traits related to kernel morphology, located on 17 chromosomes except for 4D, 6D, 7A and 7D. The contribution of A-QTLs and AA-QTLs to phenotypic variation ranged from 3.60% to 13.90% and from 0.52% to 2.76%, respectively. They had positive or negative effect on these traits. All of the loci showed significant interactions with water conditions, whereas genetic contribution to phenotypic variation was lower (<3.05%). Three major A-QTLs(Qkl.acs-1B.1, Qkw.acs-6A.1 and Qkp.acs-1B.1)explained more than 10% of the phenotypic variation. No locus was detected commonly across two water environments.Seven A-QTL hot-spot regions were harbored in the specific marker intervals of Xgwm153-Xmag981 on 1B, Xwmc231-Xbarc173 on 3B, Xgwm149-Xgwm495 on 4B, Xgwm186-Xcfa2185 on 5A, Xbarc59-Xbarc232 on 5B, Xgwm292-Xwmc161 on 5D, and Xksum255-Xbarc171 on 6A.This suggested that these marker intervals may carry important genes controlling kernel morphology in wheat.
查看全文  查看/发表评论  下载PDF阅读器
关闭

您是第19578354位访问者
版权所有麦类作物学报编辑部
京ICP备09084417号
技术支持: 本系统由北京勤云科技发展有限公司设计